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Leptin for type 1 diabetes?
Insulin has long been the therapeutic sine 
qua non for type 1 diabetes (T1D), where 
insulin deficiency is the hallmark of the 
disease. Insulin therapy comes with the 
risk of inadvertent hypoglycemia, which 
is the main barrier to tight glycemic con-
trol (1). The demonstration that leptin 
can restore euglycemia without correct-
ing insulin deficiency in streptozotocin- 
induced (STZ-induced) rodent models 
of T1D and thereby replace insulin was 
baffling and exciting (2–4). One reason 
that leptin replacement is effective in this 
model of T1D is that, in STZ-induced T1D, 
plasma leptin levels are reduced by more 
than 80% (5, 6). In humans with T1D 
treated with insulin, plasma leptin levels 
appear to only decrease by approximate-
ly 50% (7, 8). It is unclear whether leptin 
restores euglycemia in humans with T1D, 
although a trial to evaluate the effects of 
leptin in T1D patients was completed in 
2013 (https://clinicaltrials.gov/ct2/show/
NCT01268644); however, the results of 
this study have not been made public.

A recent study demonstrated that 
leptin delivery to the brain is sufficient 
to restore euglycemia in STZ-treated rats 
(5), highlighting a key role of the CNS in 
systemic glucose homeostasis. This work 

also suggested that this experimental 
paradigm would allow exploration of the 
mechanisms through which the brain con-
trols glucose homeostasis. Indeed, within 
the CNS, GABA and POMC neurons have 
been shown to be critical for the ability of 
leptin to restore euglycemia in rodent T1D 
models (9).

How does leptin restore 
euglycemia?
While these studies support the brain as 
the primary site of leptin-mediated res-
toration of euglycemia, the peripheral 
effectors remain unknown. Initially, it was 
proposed that leptin prevents hypergluca-
gonemia, a common feature of T1D that 
was thought to be the primary cause of the 
hyperglycemia observed in T1D. Indeed, 
glucagon is suppressed after leptin treat-
ment in T1D models (6), and mice that 
lack glucagon receptors are protected from 
hyperglycemia following STZ-induced 
T1D, despite persistent, absolute insulin 
deficiency (3). In these mice, restoration 
of hepatic glucagon receptor expression 
rapidly increased fasting hyperglycemia 
(3, 4). However, if glucagon was indeed the 
main driver of hyperglycemia in human 
T1D, then pancreatectomized humans that 
lack insulin and have markedly reduced 

glucagon levels should be protected from 
hyperglycemia. While pancreatectomized 
patients may have lower rates of diabet-
ic ketoacidosis (DKA) than patients with 
autoimmune T1D, they still suffer from 
fasting hyperglycemia (10). Further, ame-
lioration of hyperglucagonemia in rodent 
T1D models by administration of either a 
glucagon-like peptide 1 receptor agonist 
or a glucagon-neutralizing antibody only 
corrected hyperketonemia without revers-
ing the hyperglycemia (11). Therefore, the 
ability of leptin to suppress glucagon may 
contribute to the restoration of euglyce-
mia in T1D, but glucagon suppression does 
not appear to be the major mechanism 
through which leptin functions.

An alternative model recently pro-
posed by Perry et al. suggests that leptin 
normalizes fasting blood glucose concen-
trations in T1D by suppressing the elevat-
ed hypothalamic-pituitary-adrenal (HPA) 
axis activity known to exist in T1D (Figure 
1) (6, 12). In their 2014 study, Perry et al. 
demonstrated that glucocorticoids (GCs) 
are elevated and that lipolysis and gluco-
neogenesis are increased during hyper-
glycemia in a rat model of STZ-induced 
T1D. Moreover, i.v. administration of 
leptin reversed these STZ-induced effects 
within 6 hours of treatment, support-
ing HPA involvement in leptin-mediated 
actions (6). Perry and colleagues further 
suggested that excess delivery of non-
esterified fatty acids (NEFAs) and glyc-
erol to the liver increase hepatic acetyl- 
CoA concentrations and hepatic glucose 
production (HGP) and that these are 
key mechanisms driving hyperglycemia. 
Therefore, the ability of leptin to lower 
GCs and lipolytic flux restores euglyce-
mia (6). This is an attractive model, as it 
provides substrate flux mechanisms that 
account for the hyperglycemia in T1D and 
implies that antagonizing GCs could rep-
resent an alternative therapeutic strategy 
for treating T1D. There are three caveats to 
this initial study, however. First, HGP was 
only studied after euglycemia had been 
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It remains puzzling that GCs have 
such different effects on the antidiabetic 
effects of leptin in these two studies. Perry 
et al. (14) argue that the studies by Mor-
ton and colleagues (5) were performed 
only 3 hours after food removal and that 
the postprandial state of the animals may 
have contributed to an inability to detect 
any effects of acute leptin treatment on 
plasma glucose concentrations. However, 
Schwartz pointed out in an e-letter that 
16-hour fasts were used for their exper-
iments (5). Additionally, several studies 
have demonstrated that leptin does restore 
euglycemia in both the fed and fasted state 
for an extended amount of time (i.e., for 
weeks; refs. 15–18). Hence, the task ahead 
is to understand how brain leptin is able 
to provide long-term restoration of eugly-
cemia. Therefore, the ultimate validation 
of any such leptin-dependent mechanism 
will be to test whether leptin truly restores 
euglycemia for weeks, not just hours.

Reconciling different models
How can we resolve these divergent find-
ings? Perry et al. point out that in the study 

and colleagues also showed that systemic 
administration of corticosterone at a dose 
that maintained elevated plasma GCs at a 
level characteristic of T1D did not reduce 
the glucose-lowering effect of continuous 
i.c.v. leptin infusion (5).

In this issue, a new study by Perry et 
al. follows up their initial work and demon-
strates that leptin-mediated suppression 
of lipolysis is a key mechanism for the 
antidiabetic effects of leptin in rats with 
T1D (14). In contrast to the findings by 
Morton et al. (5), the current study found 
that normalization of hypercortisolism 
prevented restoration of glycemic control 
in i.v. leptin–treated T1D rats. Addition-
ally, reduction of lipolysis with the adi-
pose triglyceride lipase (ATGL) inhibitor 
ATGListatin rescued the ability of leptin to 
restore euglycemia in the setting of hyper-
cortisolism. Similar to GCs, the infusion of 
acetate, which raises hepatic acetyl-CoA 
concentrations, prevented the antidiabetic 
action of leptin. Finally, within hours after 
adrenalectomy, euglycemia was restored 
in STZ-induced T1D rats, but not if corti-
costerone levels were maintained.

restored, and as hyperglycemia per se can 
increase HGP, it remains unclear whether 
the suppression of HGP is a direct effect of 
leptin or an indirect effect that is second-
ary to the restoration of euglycemia (13). 
Second, the role of enhanced lipolysis was 
modeled through an intralipid infusion 
that resulted in elevated fatty acid deliv-
ery to tissues such as the liver; however, 
this infusion also represents a caloric load 
that was not controlled for. Therefore, it 
remains unclear whether observed effects 
are due to elevated fatty acids or due to 
increased caloric load. Third, the study did 
not directly test the role of lipolysis in driv-
ing hyperglycemia.

Morton et al. questioned the HPA axis 
model and showed that i.c.v. infusion of 
leptin restored euglycemia even when 
the normalization of hypercortisolism 
in STZ-induced T1D rats was prevented 
(5). Further, inhibition of GC signaling 
either through adrenalectomy or phar-
macological GC receptor blockade failed 
to normalize glycemia in T1D rats, sug-
gesting that GC suppression alone is not 
sufficient to restore euglycemia. Morton 

Figure 1. Model proposed by Perry et al. in this issue to explain the antidiabetic effects of leptin. Leptin restrains the activity of the HPA axis in T1D, 
reducing circulating corticosterone, which lowers lipolysis in adipose tissue. As of yet it remains unclear in what tissue and cell type GCs exert these 
lipolytic effects. Restrained lipolysis results in lower NEFAs and glycerol delivery to the liver, reducing gluconeogenesis and ketogenesis and thereby 
reversing hyperglycemia and DKA. PEPCK, phosphoenolpyruvate carboxykinase; G3P, glyceraldehyde 3-phosphate; HSL, hormone-sensitive lipase; PC, 
pyruvate carboxylase; βox, β oxidation.
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A key tenet of the new study by Perry et 
al. is that a reduction of lipolysis prevents 
fasting hyperglycemia in T1D, although 
this study evaluated whether leptin plus 
GCs plus ATGListatin restored euglyce-
mia, not whether ATGListatin solely, in 
the absence of leptin, restored euglycemia 
(14). The latter experiment would have 
been a more definitive approach to prob-
ing the role of lipolysis in T1D-associated 
hyperglycemia. An important confirma-
tion of the model proposed by Perry et 
al. would be the demonstration that the 
inhibition of lipolysis indeed chronically 
ameliorates hyperglycemia. A study more 
than two decades ago examined the role 
of fatty acid flux to the liver in driving the 
hyperglycemia of T1D in STZ-induced rats 
using the lipolytic inhibitor acipimox (25). 
After eight days of acipimox treatment, 
plasma NEFAs were markedly lower, but 
fasting hyperglycemia was not reduced 
(24). Granted, the antilipolytic mode of 
action of acipimox and ATGListain differ 
substantially, as acipimox inhibits lipolysis 
by activating GPR109a and ATGListatin 
is a specific inhibitor of ATGL, which ini-
tiates lipolysis in adipose tissue. Hence, 
different mode of action of these lipolytic 
inhibitors may account for the varied effi-
cacy in ameliorating fasting hyperglyce-
mia in T1D.  Whether prolonged treatment 
with ATGListatin is effective in reducing 
hyperglycemia in a T1D model has yet to 
be determined, but if it does, it may point 
to novel strategies to treat insulin-defi-
cient diabetes beyond insulin.
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antidiabetic leptin action, it is unknown 
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by Morton et al., there was a moderate 
β cell reserve, while there was none in 
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